Skip to content

空间复杂度

**空间复杂度(space complexity)**用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

01 算法相关空间

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。 暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。

在分析一段程序的空间复杂度时,我们通常统计暂存数据、栈帧空间和输出数据三部分,如图 2-15 所示。

相关代码如下:

java
/* 类 */
class Node {
    int val;
    Node next;
    Node(int x) { val = x; }
}

/* 函数 */
int function() {
    // 执行某些操作...
    return 0;
}

int algorithm(int n) {        // 输入数据
    final int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node node = new Node(0);  // 暂存数据(对象)
    int c = function();       // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}

02 推算方法

空间复杂度的推算方法与时间复杂度大致相同,只需将统计对象从“操作数量”转为“使用空间大小”。 而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。 观察以下代码,最差空间复杂度中的“最差”有两层含义。

  1. 以最差输入数据为准:当n < 10 时,空间复杂度为O(1);但当n > 10时,初始化的数组 nums 占用O(n)空间,因此最差空间复杂度为O(n)。
  2. 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用O(1)空间;当初始化数组 nums 时,程序占用O(n)空间,因此最差空间复杂度为O(n)。
java
void algorithm(int n) {
    int a = 0;                   // O(1)
    int[] b = new int[10000];    // O(1)
    if (n > 10)
        int[] nums = new int[n]; // O(n)
}

在递归函数中,需要注意统计栈帧空间。观察以下代码:

java
int function() {
    // 执行某些操作
    return 0;
}
/* 循环的空间复杂度为 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        function();
    }
}
/* 递归的空间复杂度为 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}

lucky you